14. M. Salve, A. Mandal, K. Amreen, P.K. Pattnaik and S. Goel, Greenly synthesized silver na­

noparticles for supercapacitor and electrochemical sensing applications in a 3D printed

microfluidic platform, Microchemical Journal 157 (2020). DOI: 10.1016/j.microc.2020.104973.

15. R. Wang, Y. Xu, T. Sors, J. Irudayaraj, W. Ren and R. Wang, Impedimetric detection of

bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement,

Microchimica Acta 185 (2018), p. 184.

16. M. Kamruzzaman, A.M. Alam, S.H. Lee and T.D. Dang, Chemiluminescence microfluidic

system on a chip to determine vitamin B1 using platinum nanoparticles triggered luminol-

AgNO3 reaction, Sensors and Actuators, B: Chemical 185 (2013), pp. 301–308.

17. M. Medina-Sánchez, C.C. Mayorga-Martinez, T. Watanabe, T.A. Ivandini, Y. Honda, F. Pino

et al., Microfluidic platform for environmental contaminants sensing and degradation based

on boron-doped diamond electrodes, Biosensors and Bioelectronics 75 (2016), pp. 365–374.

18. J. Zheng, M. Zhu, J. Kong, Z. Li, J. Jiang, Y. Xi et al., Microfluidic paper-based analytical

device by using Pt nanoparticles as highly active peroxidase mimic for simultaneous de­

tection of glucose and uric acid with use of a smartphone, Talanta 237 (2022), pp. 122954.

19. N.S. Ridhuan, K. Abdul Razak, Z. Lockman and A. Abdul Aziz, Structural and morphology

of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its

properties as UV sensing, Plos One 7 (2012), pp. e50405.

20. A. Bobkov, A. Varezhnikov, I. Plugin, F.S. Fedorov, V. Trouillet, U. Geckle et al., The mul­

tisensor array based on grown-on-chip zinc oxide nanorod network for selective dis­

crimination of alcohol vapors at sub-ppm range, Sensors (Switzerland) 19 (2019).

21. X. Pan and X. Zhao, Ultra-high sensitivity zinc oxide nanocombs for On-Chip room tem­

perature carbon monoxide sensing, Sensors 15 (2015), pp. 8919–8930.

22. Y. Chen, P. Xu, T. Xu, D. Zheng and X. Li, ZnO-nanowire size effect induced ultra-high

sensing response to ppb-level H2S, Sensors and Actuators B: Chemical 240 (2017), pp. 264–272.

23. C.A. Proença, T.A. Baldo, T.A. Freitas, E.M. Materón, A. Wong, A.A. Durán et al., Novel

enzyme-free immunomagnetic microfluidic device based on Co0.25Zn0.75Fe2O4 for cancer

biomarker detection, Analytica Chimica Acta 1071 (2019), pp. 59–69.

24. C.F. Jofre, M. Regiart, M.A. Fernández-Baldo, M. Bertotti, J. Raba and G.A. Messina,

Electrochemical microfluidic immunosensor based on TES-AuNPs@Fe3O4 and CMK-8 for

IgG anti-Toxocara canis determination, Analytica Chimica Acta 1096 (2020), pp. 120–129.

25. L. Xue, N. Jin, R. Guo, S. Wang, W. Qi, Y. Liu et al., Microfluidic colorimetric biosensors

based on MnO2Nanozymes and convergence-divergence spiral micromixers for rapid and

sensitive detection of salmonella, ACS Sensors 6 (2021), pp. 2883–2892.

26. N. Singh, M.A. Ali, P. Rai, A. Sharma, B.D. Malhotra and R. John, Microporous nano­

composite enabled microfluidic biochip for cardiac biomarker detection, ACS Applied

Materials and Interfaces 9 (2017), pp. 33576–33588.

27. L. Hao, L. Xue, F. Huang, G. Cai, W. Qi, M. Zhang et al., A microfluidic biosensor based on

magnetic nanoparticle separation, quantum dots labeling and mno2 nanoflower amplification

for rapid and sensitive detection of salmonella typhimurium, Micromachines 11 (2020), p. 281.

28. D. Maiti, X. Tong, X. Mou and K. Yang, Carbon-based nanomaterials for biomedical appli­

cations: A recent study, Frontiers in Pharmacology 9 (2018), p. 1401.

29. W. Zhang, Y. Du and M.L. Wang, On-chip highly sensitive saliva glucose sensing using

multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and

glucose oxidase, Sensing and Bio-Sensing Research 4 (2015), pp. 96–102.

30. R. Chand and S. Neethirajan, Microfluidic platform integrated with graphene-gold nano-

composite aptasensor for one-step detection of norovirus, Biosensors and Bioelectronics 98

(2017), pp. 47–53.

31. M.A. Ali, K. Mondal, Y. Wang, H. Jiang, N.K. Mahal, M.J. Castellano et al., In situ integration

of graphene foam-titanium nitride based bio-scaffolds and microfluidic structures for soil

nutrient sensors, Lab on a Chip 17 (2017), pp. 274–285.

32. M.A. Ali, K. Mondal, Y. Jiao, S. Oren, Z. Xu, A. Sharma et al., Microfluidic immuno-biochip for

detection of breast cancer biomarkers using hierarchical composite of porous graphene and ti­

tanium dioxide nanofibers, ACS Applied Materials and Interfaces 8 (2016), pp. 20570–20582.

90

Bioelectronics